MECH 234 and MECH 235
ENGINEERING MECHANICS: STATICS
Spring 2016

Instructors: MECH 234-002: Day Section Hybrid
On-line Lecture, Tues., 11:30-12:55: Dr. G. Golub, PhD, P.E., golub@njit.edu, 262 Colton Hall, 973-596-2448
In-class Recitation, Thur., 1:00-2:25, KUPF-104: Prof. G. Milano, P.E., milano@njit.edu, 239 Colton Hall, 973-596-5830

MECH 235-002: Day Section Hybrid
On-line Lecture, Tues., 11:30-12:55: Dr. G. Golub, PhD, P.E., golub@njit.edu, 262 Colton Hall, 973-596-2448
In-class Recitation, Thur., 2:30-3:55, no room assigned yet: Prof. G. Milano, P.E., milano@njit.edu, 239-Colton Hall, 973-596-5830

MECH 234-102: Tues., 6:00-9:05 p.m., Cullimore Lect. Hall 2, Prof. H. Fox, henry.e.fox@njit.edu
MECH 235-102: Mon., 6:00-9:05 p.m., no room assignment yet, Prof. Diogo Santos, P.E., diogosantos123@gmail.com, 201-693-3480

Teaching Assistants: Tutoring in 423-Colton Hall - Schedule for Tutoring will be posted on the door of 423-Colton Hall.

Prerequisites: Phys 111, Math 112. Provides an understanding of equilibrium of particles and rigid bodies subject to concentrated and distributed forces.

Students must earn a C or better in this course to register for Strength of Materials, MECH237.

Below are additional LINKS to “Course Information” and “Recitation Examples”:

<table>
<thead>
<tr>
<th>Additional Course Information</th>
<th>Recitation Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructors, Tutoring, Grading, and Homework Instructions</td>
<td>Useful solved problems from the Beer & Johnston text</td>
</tr>
</tbody>
</table>
Problems in **Blue are links** to examples from a textbook by Beer & Johnston 6th edition, found at the Reserve Desk, Library.

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Study pages</th>
<th>Suggested Homework Problems** from textbook (not Connect)</th>
</tr>
</thead>
</table>
| 1 | Ch. 1: Introduction
Ch. 2: Statics of Particles, Trig Method (sketch force polygon) | Study p. 2 - 14
p. 16 - 25 | Sketch force polygon, use Law of Sines and Cosines to solve.
Ch. 2: 2, 6, 10, 12, 20 |
| 2 | Ch. 2: Rectangular Components
Equilibrium of a Particle | p. 29 - 35
p. 39 – 45 | Ch. 2: 21 & 31, 23, 36
Ch. 2: 44, 46, 47, 60, 66 |
| 3 | Ch. 2: Forces in Space
Equilibrium of a Particle in Space
Review and Summary | p. 52 - 62
p. 66–69
p. 75 – 78 | Ch. 2: 71 & 72, 91 & 92
Ch. 2: 100, 105
Helpful: 2-66, 89 & 90, 2-114 |
| 4 | Ch. 3: Rigid Bodies: Equivalent System of Forces | p. 83 – 99 | Ch. 3: 2, 4, 12, 24 and 29 |
| 5 | Ch. 3: Dot Product, Moment About an Axis | p. 105 - 114 | Ch. 3: 35, 37 and 38, 49, 51 |
| 6 | Ch. 3: Couples and Force-Couple Systems
Equivalent Systems
Review and Summary | p. 120 – 128
p. 136–150
p. 161 – 168 | Ch. 3: 70, 72, 78, 89
Ch. 3: 104, 105, 113 |
| 7 | Ch. 4: Equilibrium of Rigid Bodies
Equilibrium of a Two-Force Body
Review and Summary | p. 170 – 183
(FBD’s, 184)
p. 195 – 198
p. 225 – 229 | Ch. 4: 4, 8, 18, 27, 33
Ch 4: 67, 68
Helpful: 4,3,12, 17, 26, 30, [43, 72, 101] |
| 8 | Ch. 6: Analysis of Structures: Method of Joints | p. 298 – 309 | Ch. 6: 2, 7, 18, 28
Helpful: 14, 27 [13, 28] |
| 9 | Ch. 6: Truss Analysis: Method of Sections | p. 317 – 324 | Ch. 6: 45, 47, 52, 54 |
| 10 | Ch. 6: Frames
Review and Summary | p. 330 – 338
(practice FBD’s, p. 339)
p. 361 – 365 | Ch. 6: 76, 88, 92, 102, 105 |
| 11 | Ch. 5: Distributed Forces: Centroids and Center of Gravity | p. 230 - 244
p. 249 - 257 | Ch. 5: 3, 6, 9
Ch. 5: 34, 40
Helpful: [25, 32, 34, 79] |
| 12 | Ch. 5: Distributed Loads | p. 262–268
class notes | Ch. 5: 66, 69, 70, 76
Helpful: 5,78, 81, 83 |
Homework to be assigned by your professor. Homework will be collected randomly per your professor. NO LATE homework can be accepted after the due date.

Additional homework will be assigned from the on-line McGraw-Hill Connect website. Quizzes may be assigned on this website. Grades will automatically be tabulated.

EXAMS: Mandatory attendance at all exams.

Day Sections have common hour exams on Mondays, 4:00 -5:25, Feb. 8, Mar. 7, and Apr.11. Check for any exam conflicts in advance and notify your professors.

Evening Sections will have exams during class time to be announced by your professor.

DAY and EVENING sections: Quizzes on the McGraw-Hill CONNECT website will count as ONE EXAM.

DAY and EVENING sections: There will be NO make-ups for missed exams without acceptable validation for your absence. You must provide documentation to verify your absence. Avoid missing exams. Arrangements will be at the discretion of your professor.

The NJIT Honor Code will be upheld and any violations will be brought to the immediate attention of the Dean of Students.

Students will be consulted with by the instructor and must agree to any modifications or deviation from the syllabus throughout the course of the semester.

CEE Mission, Program Educational Objectives and Student Outcomes

The mission of the Department of Civil and Environmental Engineering is:
• to educate a diverse student body to be employed in the engineering profession
• to encourage research and scholarship among our faculty and students
• to promote service to the engineering profession and society

Our program educational objectives are reflected in the achievements of our recent alumni.

1 - Engineering Practice: Recent alumni will successfully engage in the practice of civil engineering within industry, government, and private practice, working toward sustainable solutions in a wide array of technical specialties including construction, environmental, geotechnical, structural, transportation, and water resources.

2 - Professional Growth: Recent alumni will advance their skills through professional growth and development activities such as graduate study in engineering, professional registration, and continuing education; some graduates will transition into other professional fields such as business and law through further education.

3 - Service: Recent alumni will perform service to society and the engineering profession through membership and participation in professional societies, government, educational institutions, civic organizations, and humanitarian endeavors.

Our student outcomes are what students are expected to know and be able to do by the time of their graduation:

(a) an ability to apply knowledge of math, science, and engineering
(b) an ability to design and conduct experiments, as well as interpret data
(c) an ability to design a system, component or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
(d) an ability to function on multi-disciplinary teams
(e) an ability to identify, formulate, and solve engineering problems
(f) an understanding of ethical and professional responsibility
(g) an ability to communicate effectively
(h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
(i) a recognition of need for, and an ability to engage in life-long learning
(j) a knowledge of contemporary issues
(k) an ability to use techniques, skills and modern engineering tools necessary for engineering practice

Rev. 4/4/12, 9/11/13

Course Objectives Matrix; MECH 235 Statics
<table>
<thead>
<tr>
<th>Strategies and Actions</th>
<th>Student Learning Objectives</th>
<th>Student Outcomes (a-k)</th>
<th>Program Educational Objectives</th>
<th>Assessment Methods /Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Objective 1: Provide transition from Physics (science) to Statics (engineering).</td>
<td>Present engineering approach and problem solving techniques used for vector analysis.</td>
<td>Able to apply problem-solving techniques while building on math and physics fundamentals relevant to force systems in equilibrium.</td>
<td>a, c, i</td>
<td>1</td>
</tr>
<tr>
<td>Illustrate applications to practical problems of torque, moments, and couples.</td>
<td>Recognize the application of geometry and trigonometry to realistic-type problems. Understand the practical application of cross products and dot products.</td>
<td>a, c, i</td>
<td>1</td>
<td>decorate, bonus problems, and exams.</td>
</tr>
<tr>
<td>Course Objective 2: Master the concept of two-dimensional and three-dimensional vectors.</td>
<td>Illustrate 2D vector components by orientation using trigonometry and proportions.</td>
<td>Learn the best approach to determine vector components. Understand when and how to apply trigonometry or proportions in determining vector components.</td>
<td>a, c, i</td>
<td>1</td>
</tr>
<tr>
<td>Use vivid Power Point examples to demonstrate analysis technique for force systems on beams and trusses and frames.</td>
<td>Learn the best approach to determine vector components. Understand when and how to apply trigonometry or proportions in determining vector components.</td>
<td>a, c, i</td>
<td>1</td>
<td>Homework and exams.</td>
</tr>
<tr>
<td>Demonstrate logical approach to spatial vectors by visualization of forces, moments.</td>
<td>Able to visualize orientation of spatial components and to develop technique to determine these components using geometry and projections. Understand application of cross products.</td>
<td>a, c, i</td>
<td>1</td>
<td>Homework, exams, and bonus challenge problems.</td>
</tr>
<tr>
<td>Course Objective 3: Master the concept of developing free body, diagrams and how to formulate and structure problems solving techniques which is fundamental to the solution of all engineering problems.</td>
<td>Require FBD's, for all problems and emphasize importance of vector directions.</td>
<td>Ability to translate a problem statement into a FBD and distinguish tensile and compressive members in trusses and frames. Able to understand the effect of friction in a force system.</td>
<td>a, c, i</td>
<td>1</td>
</tr>
<tr>
<td>Illustrate the approach of going from the FBD to the problem solution by formulating the appropriate equation set.</td>
<td>Understand the techniques of problem solving based upon the use of FBD's applied to beams, trusses, and frames. Understand the concepts of centroids and moments of inertia.</td>
<td>a, c, i</td>
<td>1</td>
<td>Homework, bonus challenge problems, and exams.</td>
</tr>
<tr>
<td>Provide numerous solved problems available on web. Require numerous homework problems weekly.</td>
<td>Develop the technique of problem solving strategy by repetition for all topics.</td>
<td>a, e</td>
<td>1</td>
<td>Homework, exams and bonus challenge problems.</td>
</tr>
</tbody>
</table>

Rev. 1/6/13,