New Jersey Institute of Technology Department of Civil & Environmental Engineering

CE 321 – Wate	r Resources Engineering Fall 2016					
Text:	Wurbs and James, Water Resources Engineering, 1 st Edition,					
	Prentice Hall, 2002 ISBN: 0-13-0812935					
	Other references for Water Quality Topics of Interest					
	READING ASSIGNMENTS: Will be given during the conduct					
	of course					
Instructor:	Prof. Robert Dresnack, Office: 264 Colton Hall, 973-596-2469					
	dresnack@njit.edu Office Hours: Monday 11:30 AM-1PM and					
	Thursday 3:30-5 PM					
Prerequisite: CE 200, CE 200A, CE 260, Math 225. Training in methods of						
developing water supplies under normal and extreme (i.e. droughts, floods)						
conditions. Covers hydrologic techniques such as surface and ground water						
	ph analysis and routing (detention, reservoir) analyses,					
probabilistic methods related to hydrologic studies. Water quality issues are						
briefly discusse						
Week	Topics					
1	Introduction-Hydrologic Cycle, Random Nature of Rainfall					
	(Normal Distribution).					
2	Droughts, Floods, Return Values for Extreme Flows					
	(Gumbel's Technique).					
3,4	Planning for Water Needs; Reservoirs-Storage-Yield					
	Relationships Mass-Curve Analysis for surface water supplies.					
5,6	Streamflow Data Simulation Rainfall-Runoff Relatioinship					
	intensity-Duration Curves; Rational Method, (Stormwater					
	Management)					
7,8	Ground Water Development – (Confined & Unconfined					
	Aquifers). Ground Water Development (continued).					
	Interference of Wells, Steady and Non-Steady State					
	Drawdown Solution for Single and Multiple Well Problems.					
9,10	Hydrograph Analysis; Unit Hydrograph Development;					
	Expansion & Contraction Technique					
11,12	Reservoir Routing (Application to Detention Basins and Flood					
	Control Reservoirs).					
13	Water Quality Issues.					
	Remainder of Weeks for Examination					

Note: Certain homework assignments may require computer-utilized solutions (e.g. probability problems, reservoir routing problems, etc.) Homework assignments are due one week after being assigned. There are 2 quizzes (tentatively given at 5 week intervals) and a final exam in the course. The final exam will comprise 33% of the final grade. Homework will be reviewed but not graded

*The NJIT Honor Code will be upheld and any violations will be brought to the immediate attention of the Dean of Students.

*Students will be consulted with by the instructor to any modifications or deviations from the syllabus throughout the course of the semester.

Department of Civil and Environmental Engineering

CE 321 – Water Resources Engineering

Description:

The objective of the course is to train the student in methods of developing water supplies and to briefly describe the means to treat water for consumptive use. Hydrologic techniques such as surface and ground water yields, stormwater management, hydrograph and touting analyses, and probabilistic methods related to hydrologic studies for extreme cases (e.g. droughts and floods) are treated in the course.

Prerequisites:	CE 200 – Surveying
	CE 200A – Surveying Lab
	CE 260 – Civil Engineering Methods
	Math 225 – Survey of Probability and Statistics

Textbook(s) Materials Required:

Wurbs and James, Water Resources Engineering, 1st. Edition, Prentice Hall, 2002, ISBN: 0-13-0812935.

Course Objectives:

1. Understand how water resources are developed and how needs are quantified.

- 2. Learn how the potential for extreme hydrologic events (e.g. floods and droughts) are analyzed and quantified.
- 3. Understand the importance of insuring water resources that are adequate from both a quantitative and qualitative standpoint.
- 4. Gain the ability to utilize state of the art techniques employed in the discipline.

Topics:

Introduction-Hydrologic Cycle, Random Nature of Rainfall (Normal Distribution) Droughts, Floods, Return Values for Extreme Flows (Gumbel's Techniques Rainfall-Runoff Relationships, Intensity-Duration Curves; Rational Method

Reservoirs-Storage-

CEE Mission, Program Educational Objectives and Student Outcomes

The mission of the Department of Civil and Environmental Engineering is:

- to educate a diverse student body to be employed in the engineering profession
- to encourage research and scholarship among our faculty and students
- to promote service to the engineering profession and society

Our program educational objectives are reflected in the achievements of our recent alumni.

1- Engineering Practice: Recent alumni will successfully engage in the practice of civil engineering within industry, government, and private practice, working toward sustainable solutions in a wide array of technical specialties including construction, environmental, geotechnical, structural, transportation, and water resources.

2 – Professional Growth: Recent alumni will advance their skills through professional growth and development activities such as graduate study in engineering, professional registration, and continuing education; some graduates will transition into other professional fields such as business and law through further education.

3 – Service: Recent alumni will perform service to society and the engineering profession through membership and participation in professional societies, government, educational institutions, civil organizations, and humanitarian endeavors.

Our student outcomes are what students are expected to know and be able to do by the time of their graduation:

- (a) an ability to apply knowledge of math, science, and engineering
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data

- (c) an ability to design a system, component or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (d) an ability to function on multi-disciplinary teams
- (e) an ability to identify, formulate, and solve engineering problems
- (f) an understanding of ethical and professional responsibility
- (g) an ability to communicate effectively
- (h) the broad education necessary to understand the impact of engineering solutions in a global,
- (i) a recognition, of need for, and an ability to engage in life-long learning
- (j) a knowledge of contemporary issues
- (k) an ability to use techniques, skills and modern engineering tools necessary for engineering practice

Rev. 8/28/13

Course Objectives Matrix -CE 321 Water Resources Engineering

Strategies and	Student Learning	Student Outcomes	Program	Assessment
Actions	Objectives	(a-k)	Educational	Methods/Matrics
	-		Objectives	
Course Objective 1	Understand how w	ater supply needs a	e quantified, and ho	w water resources
are developed.			•	
Discuss source of	Learn the sources	a,e,h,k	1,2	Discussions,
information and	of data related to			homework, and
time horizons	water resources			quizzes.
utilized for water	and appreciate the			1
resource planning.	rationale for			
1 0	planning 50 years			
	in advance for			
	major surface			
	water supply			
	development.			
Discuss various	Understand the	a,e,g,k	1,2,3	Discussions,
options associated	criteria utilized in			homework, and
with developing	ranking potential			quizzes.
water resources.	sources and learn			•
	concepts related to			
	reliable yields			
	associated with			
	specific sources of			
	interest.			
Course Objective 2	2: Learn how the pot	tential for extreme h	ydrologic events (e.,	g. floods and
	zed and quantified.			-
Discuss floods	Recognize that	a,,e,f,g,j	1,2,3	Discussions and
and droughts as	water resource			quizzes.
well as data	engineers must			
sources.	plan for normal			
	situations as well			

	ac autroma avanta			
	as extreme events			
	to adequately			
	protect the public			
6	at large.	61.1	1	.
Discuss	Ability to apply	a,e,f,h,k	1	Homework and
methodologies for	methodologies for			quizzes.
assessing return	assessing return			
periods associated	periods associated			
with droughts and	with droughts and			
floods of interests	floods of interest.			
			ng water resources th	at are adequate
from both a quant	itative and qualitativ	ve standpoint.		
Discuss the	Learn that	e,f,h,j	1,2,3	Discussions and
importance of	potential water			quizzes.
water quality from	supply sources			-
a safety and	must be initially			
aesthetic	investigated from			
standpoint.	both a quantitative			
1	and qualitative			
	viewpoint.			
Provide examples	Gain insights as to	a,e,h,k	1,2,3	Discussions and
of water quality	how to assess raw	u, e, ii, ii	1,2,0	quizzes.
standards and	water quality.			quilles
their rationale	Learn the			
then rationale	differences in raw			
	water quality			
	between ground			
	water and surface			
	water, and the			
	methods to treat			
Course Objective	same.	willing stag of the a		und in the
0	4: Gain the adulty to	utilize stae of the a	rt techniques employ	yea in the
discipline.	Variation of the	1-	1.0	Diamatica
Present techniques	Knowledge of the	a,e,k	1,2	Discussions,
utilized to assess	current techniques			homework, and
safe yield of	used to assess			quizzes.
surface water	resource and			
supply sources,	impacts associated			
and potential draw	with development			
down effects for	of specific sources			
groundwater	of water			
supplies.	A 1 *1*.	<u> </u>		
Discuss reservoir	Ability to use	a,e,f,h,j,k	1,2	Discussions,
design. Reservoir	state-of-the art			homework, and
and detention	methodologies			quizzes.
basin routing and	utilized in the			
hydrograph	water resources			
analysis.	field.			